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Composite manufacturing in the U.S.

* The U.S composites market was
$15.58 billion in 2023 and expected to  U:S: Composites Market |

grow annually by 5.3% (Grand View
Research, 2023). \\

@ Layup Pultrusion Compression Molding Injection Molding
® RTM @ Filament @ Others
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Composite manufacturing in the U.S.

* The U.S composites market was
$15.58 billion in 2023 and expected to  U:S: Composites Market |

grow annually by 5.3% (Grand View

Research, 2023). \\
 Largest manufacturing process is

layup, with growth expected in

automotive, energy, infrastructure, ®Lanp @ Putnson  Corpmsson Modng @ ricton Nodng

architecture, aerospace, and marine
applications.
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The goal of this research is to encourage investment

in U.S. composite manufacturing

* Automated finishing can encourage investment through
— Increasing quality
— Reducing cycle time
— Increasing throughput.
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The goal of this research is to encourage investment

in U.S. composite manufacturing

* Automated finishing can encourage investment through
— Increasing quality
— Reducing cycle time
— Increasing throughput.
* However, to make automated composite finishing economically viable:
— Keep capital costs low
— Be able to adapt to new parts
— Dramatically reduce cycle time.

* The combination of these objectives will lead to onshoring of composites
manufacturing, leading to:

— More U.S. manufacturing facilities
— Increased U.S. jobs.
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Why automate composite finishing?

* A National Association of
Manufacturers survey found (Bloom,
2025) that almost half (47.46%) of U.S.
manufacturers identified hiring and
retaining labor as a big challenge

— Improving worker safety and well-
being is a priority for strengthening
the workforce.
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Why automate composite finishing?

e A National Association of Manufacturers \
survey found (Bloom, 2025) that almost \
half (47.46%) of U.S. manufacturers
identified hiring and retaining labor as a
big challenge

— Improving worker safety and well-being
is a priority for strengthening the
workforce.

e Significantly reduce manufacturing cycle
time.

* Consistent part quality.
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Automating composite finishing is a

unique challenge

* Composites are often used for
manufacturing large, lightweight
structural components.
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Automating composite finishing is a

unique challenge

* Composites are used for
manufacturing large lightweight
components.

* Large, flexible parts are difficult to
fixture and lack the necessary
consistency for pre-planned toolpaths.
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Automating composite finishing is a

unique challenge

* Composites are used for
manufacturing large lightweight
components.

* Large, flexible parts are difficult to
fixture and lack the necessary
consistency for pre-planned toolpaths.

e Our automated system produces
toolpaths from high-precision vison
systems to enable automation for
these composite structures.
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Automation tool design and toolpath

generation

* Designed and selected tools to
optimize for composite finishing:

— Bandsaw for flashing removal

— Drum sander for surface
preparation.
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Automation tool design and toolpath

generation

* Designed and selected tools to optimize
for composite finishing:

— Bandsaw for flashing removal
— Drum sander for surface preparation.

* Toolpath generation from high-precision
scans

— Can adapt to variations in the produced
part

— Account for inconsistent fixturing.

Photo by Hunter Huth, NREL
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Demonstrations

Trimming — 4x speed Surface Preparation - 4x speed

Videos by Hunter Huth, NREL
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Despite successful trials, further development

needed to improve the speed and quality

* Previous phase focused on how to use Collect 3D data of
captured blade geometry to plan blade geometry
toolpaths.

Process data to
plan a toolpath

Execute toolpath
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Despite successful trials, further development

needed to improve the speed and quality

* Previous phase focused on how to use Collect 3D data of
captured blade geometry to plan SIEEE FEEmEY
toolpaths.

* Sequentially captured data, planned a Process data to
toolpath, and executed the toolpath plan a toolpath

— Inefficient in terms of cycle time.

Execute toolpath
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Despite successful trials, further development

needed to improve the speed and quality

* Previous phase focused on how to use captured
blade geometry to plan toolpaths. Collect 3D data of
» Sequentially captured data, planned a toolpath, blade geometry
and executed the toolpath

— Inefficient in terms of cycle time.

* Current phase will scan, plan, and execute in
parallel

— Substantial reduction in cycle time

— Limited by tool operation speed SN SR
. . .. . Execute toolpath
— Real-time feedback to improve finish quality. ' plan a toolpath

— Aligns with AMMTO smart manufacturing
objectives
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Real-time control interface

* Controlling real-time motion of an
industrial robot is not typical operation

* Developed a ROS2 (2022) interface to
controlling the motion in real time

e Stream joint commands to the robot at
250 Hz

e Continuously update trajectory from
sensor measurements

* Ensure final trajectory is smooth for
precise execution.
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Large-scale composite finishing

simulation

* Developed in Gazebo to test on
simulated parts

* Inform robot configuration of
tools, sensors, and mobility

* Rapid development of real-time
toolpath generation algorithms.

Robot Visualized in Gazebo Simulation
Rviz

Video by Hunter Huth, NREL
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Flashing detection algorithm

e Starting with a raw 2D surface profile
measurement
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Flashing detection algorithm

e Starting with a raw 2D surface profile

—0.00005 A

measurement —r
* Apply a Savitzky-Golay (1964) digital filter 000010
— Low-pass filter to find large changes to data & ]
trend £ .
— Create peaks at the mold line A

—0.00010 A
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Flashing detection algorithm

Starting with a raw 2D surface profile
measurement. —
Apply a Savitzky-Golay (1964) digital filter —— ~ El“;:gl
— Low-pass filter to find large changes to data
trend
— Create peaks at the mold line.
Digital signal thresholding and peak detection
— Adaptive thresholding based on the
estimated signal-to-noise ratio.
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Flashing detection algorithm

Starting with a raw 2D surface profile

measurement .
Apply a Savitzky-Golay (1964) digital filter . . ﬁjd;'g“
— Low-pass filter to find large changes to data
trend
— Create peaks at the mold line. ET)
Digital signal thresholding and peak detection o8
— Adaptive thresholding based on the 050
estimated signal-to-noise ratio. 052
Extract these peaks from the original data S

— Obtain part boundaries in 3D space.
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Next step: build a 3D surface from

2D measurements

e Data are captured at a high rate of
~100 Hz
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Next step: build a 3D surface from

2D measurements

e [dentify flashing on every scan

NREL | 29



Next step: build a 3D surface from

2D measurements

e Separate scans by ¥1 cm in the
scanning direction
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Next step: build a 3D surface from

2D measurements

* Drop scans that produce
discontinuities in the mold line or part
edge
— Secondary check on flashing

detection algorithm.
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Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming
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Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming

* This phase is designhing a custom bandsaw
optimized for the operation

NREL | 33



Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming

* This phase is designing a custom bandsaw
optimized for the operation

* Reduced footprint to avoid collisions

NREL | 34



Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming

* This phase is designing a custom bandsaw
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Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming

* This phase is designing a custom bandsaw
optimized for the operation

* Reduced footprint to avoid collisions

* Powerful motor for increased operations
speed

* Higher blade tension to improve accuracy
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Bandsaw end effector

* Previous research adapted a standard
bandsaw for automated trimming

* This phase is desighing a custom bandsaw
optimized for the operation

* Reduced footprint to avoid collisions

e Powerful motor for increased operations
speed

* Higher tension to improve accuracy
» Supercharged dust collection system.
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The future of this research

Year 1 Automated Trimming

e Automation system for removing the bulk of flashing material

® Develops the core enabling technology
— Real-time control
— Real-time toolpath generation

Year 2 Automated Grinding and Surface Preparation

e Adapts the core algorithms previously developed to grind the surface to meet shape
tolerances

* Prepare for bonding protective material to the surface

Year 3 Full-Scale Demonstration

e Work with our industry partner, GE Vernova, to install this system in a U.S.
manufacturing facility

* Enable follow-on projects to further improve automation in composites manufacturing
(inspection, repair, etc.) NREL | 38
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